Tuesday, September 1, 2015

The Importance Of High Pressure Positive Displacement Pump In The Industry

By Daphne Bowen


The industrial applications of pumps have greatly changed the way machines work. At the helm of this transformation is the high pressure positive displacement pump (abbreviated as the PD pumps). Ever since their discovery, they have constantly been applied in machinery both in the traditional and modern setting.

The rotary and reciprocating pumps constitute the two main classes of pumps. They are similar in that they both allow a constant rate of flow but different in a functional point of view. Rotary pumps require constant lubrication through the pumping process. Their suitability with highly viscous fluids is the corner stone of their operation. They however cannot transmit abrasive fluids like water and gas efficiently. Vaporized fluids can be pumped but for only limited periods of time. Reciprocating pumps on the other hand are more all rounded because they are better suited for both viscous and abrasive liquids.

The efficiency and rate of flow of pumps is hugely dependent on two physical properties, that is, the viscosity of fluids and the pressure. The preference of PD pumps stems from their ability to maintain a constant flow rate given the ever changing physical properties.

The most monumental applications of PD pumps is in the oil industry. Here they mainly serve to pump the crude oil from the extraction site to the processing site. It was initially expensive to separately pump the constituents of the extracted matter which included the oil, gas, water and sand. This was largely due to the fact that it contained significantly large amounts of gas. However the ability of reciprocating pumps to transmit gases came in handy. The mixture was now being transmitted as it was without the need of building separate pumping stations for each element.

This desirable property has been effectively applied. Initially the extracted crude oil contained oil, gas, sand and water. Separation had to be done prior to transportation and each element mentioned above had to be transported separately. This was in essence quite expensive. PD drives however enabled the petroleum industry to tremendously reduce the cost of offshore oil production since there was no need of separating the initial mixture before moving it.

In the field of chemical engineering, PD drives are vital to the pumping mechanisms. A standard chemical reaction results in huge changes in viscosity of the underlying mixture. This implies that other pumps such as the centrifugal types would not sufficiently carry the mixture through the reactor. PD drives will be able to transmit the mixture constantly irregardless of the fluctuations. This is the major reason why its uses extend to the pharmaceutical, foods and beverages and the biotechnology industries.

A similar application can be seen in paper milling industries. Paper mills are fueled by a mixture of fibers from the wood and liquid chemical. During the process the resulting mixture usually undergoes changes in density as it is burnt. Other problems such as clogging and erosion of passageways is also a common phenomena. Since the process of paper manufacturing is a highly regulated procedure, a constant flow of fuel is required. Using any other type of pumps despite these associated problems will not yield the required results. The reciprocating type pumps therefore offer the best solution for paper millers.

As a parting shot, each and every aspect of the transmitted fluid should be analyzed before choosing which pumps to use, however the PD pumps have been seen to be efficient at maintaining the rate of flow.




About the Author:



No comments: